Embedded software: strategic issues

T
— 4 =

I
]
P

I N5

Embedded software: strategic issues

Brent Frere,
LiLux

Linux Days 2002

11111% li?"l e

I N5

Some definitions

Some definitions

Free Software

linu &,

Free software does not means 'gratis software' but
software respecting the following principles:

Some definitions

Free Software
- Freedom O: Freedom of execution

linu &,

Whenever country you arein.

For whatever environment. business, private,
educational purpose. Free Software doesn't mean
'non commercia'. Examples of commercial free
software: Linux distributors (Suse, RedHat,
Mandrake, Caldera, Slackware...), MySQL, IBM...
Whenever the purpose of the execution is.
Whatever the power of the executing host is.

Even if the software is used concurrently by
NUMErOUS USers.

Some definitions

Free Software

— Freedom O: Freedom of execution
— Freedom 1: Freedom to adapt, modify, study the soft

linu &,

Implies the availability of the sources.

Allows learning process. Learning computer skills
on a closed systems is not learning: it's training
how to use commercial product.

Allows adaptations for a specific use.

Allowsfast correction process.

Prevents spy code, secret back-doors.

Enhance security by white-box testings, and fast
security fix availlability.

Some definitions

Free Software

— Freedom O: Freedom of execution
— Freedom 1: Freedom to adapt, modify, study the soft
— Freedom 2: Freedom to distribute copies

linux e

For free or against afee.

Free software doesn't mean 'gratis.

The copies must be distributed under the same
license terms, in order to guarantee the software to
remain free.

Some definitions

Free Software

— Freedom O: Freedom of execution

— Freedom 1: Freedom to adapt, modify, study the soft
— Freedom 2: Freedom to distribute copies

— Freedom 3: Freedom to enhance the soft

linu &,

You can modify the software, enhance, add
functionalities and distribute the new obtained
verson under the same license terms.

Some definitions

Free Software
Free-Software foundation

linu &,

Created by Mr Richard Stallman in 1985,
originator of the 'Free Software’ concepts. This
organization created the 'CopyLeft’, GPL and L-
GPL licenses, and has deve oped the GNU project.

GNU/Linux is a complete software solution using
Linux as free operating system (kernel) and free
GNU toolsonit.

Some definitions

Free Software
Free-Software foundation
Open-Source

linu &,

Open Source is a newer organization that uses
'‘Open' instead of 'free' to avoid confusion between
free in the expressions

* free beer

* free entrance

Some definitions

Free Software
Free-Software foundation
Open-Source

— Not only access to the sources

linu &,

Open source does not only mean access to the
SOUrCes.

Some definitions

Free Software
Free-Software foundation
Open-Source
— Not only access to the sources
— Slight changes compared with Free Software:

linu &,

It actualy gives the same rights as the 'Free
software' but with some differences:

Some definitions

Free Software
Free-Software foundation
Open-Source

— Not only access to the sources

— Slight changes compared with Free Software:
Distribution of modified copies may be restricted

linu &,

The digtribution of modifications can be limited to
paiches. This does not harm the freedom of
changing the source and distributing the modified
software but force some respect to the original
version of the software, avoiding various slightly
different versions to be distributed under the same
name and version number.

Some definitions

Free Software
Free-Software foundation
Open-Source

— Not only access to the sources

— Slight changes compared with Free Software:
— GPL iscompliant with Open-Source definition

linu &,

Actually, the most famous license of the 'free
software world' (the GPL) is compliant with Open
Source principles.

Some definitions

Free Software
Free-Software foundation
Open-Source

Standards

linu &,

A standard is not awidely used format or protocol:
itis

* Published

* Exist in multiple independent implementations
* |sinteroperable between different systems

Ex: IP, HTML, ...
Counter examples. Autocad, Word, Media
Player...

Situation in embedded software world

linux e

Situation in embedded software world

Large amount of processors, micro controllers

linu &,

There exists a huge amount of different hardware
architectures, including various processors or
micro-controllers, busses, interfaces, ...

Situation in embedded software world

Large amount of processors, micro controllers
Numerous hardware architectures

linu &,

Embedded systems means usually an architecture
that mugt fits the requirements of the application,
no more, no less, and be low cost for large series
Industrial production. Thisleads to about as much
architectures as embedded applications.

Situation in embedded software world

Large amount of processors, micro controllers
Numerous hardware architectures
Lots of different interfaces

linu &,

Embedded systems have usually various interfaces
(or even about no interface, such asacar darm).
When thinking about a Internet-ready home TV
and arouter, it isclear that the nature of the
Interfaces are not exactly the same.

Situation in embedded software world

Large amount of processors, micro controllers
Numerous hardware architectures

Lots of different interfaces

Real-time, preemptive multi-tasking support required

linu &,

Most of the time, embedded applications are
supposed to react in agiven, limited, controlled
amount of time (as example an ABS system
embedded in a car) and perform multiple tasks at
the same time. Real-time services and preemptive
multi-tasking is thus required.

Situation in embedded software world

Large amount of processors, micro controllers

Numerous hardware architectures

Lots of different interfaces

Real-time, preemptive multi-tasking support required
Many proprietary embedded systems

linu &,

Conseguence: the embedded systems world has
known a huge amount of different proprietary
embedded OS and software suites.

Situation in embedded software world

Large amount of processors, micro controllers
Numerous hardware architectures
Lots of different interfaces
Real-time, preemptive multi-tasking support required
Many proprietary embedded systems
High cost for a proprietary system maintenance

linu &,

Because of they were proprietary and non-
compatible, the cost of development of drivers for
new interfaces, the cost of port to new
architectures, ... was not shared among large
number of customers, leading to high prices for
such dedicated embedded systems.

Situation in embedded software world

Large amount of processors, micro controllers

Numerous hardware architectures

Lots of different interfaces

Real-time, preemptive multi-tasking support required
Many proprietary embedded systems
High cost for a proprietary system maintenance
Requires efficiency, portability, ssandardization

linu &,

So the embedded system we need requires
efficiency (low CPU and memory use), portability
(sharing the development costson all the
platforms) and standardi zation (for strategic
reasons but also to lower the price)

Situation in embedded software world

Large amount of processors, micro controllers

Numerous hardware architectures

Lots of different interfaces

Real-time, preemptive multi-tasking support required
Many proprietary embedded systems
High cost for a proprietary system maintenance
Requires efficiency, portability, ssandardization

hnlx * Embedded Linux <|ip':g§|g)

The embedded software suite of choiceis Linux,
aswewill seein the next dides.

Example of embedded devices: PDAS

Embedix
Plus PDA

Numerous PDA vendors (in Asia) are basing their
systems on Linux, with the advantage that huge
amount applications (games, web browsers, word
processors) are aready available for free.

Linux runs on Mips, ARM, ... Cross-compilation is
not an issue. Stability of Linux allowsthe system
to go to 'sleep mode' when not used, so the system
Is actually never rebooting. Thisis for sure not
possible with OS that requires reboots to change
settings, install software or suffer from memory
leakings...

Example of embedded devices:
Single board Pcs

Single board PCs are ready for embedded
applications. From few EUROSs, you can purchase
a complete computer, with USD, IDE, Seridl,
Ethernet interfaces. Linux can be used with only a
serial interface as console.

Example of embedded devices:
Remote management PCI-cards

In order to remotey manage hosts running instable
unreliable OSes, a remote management card can be
used. Often, it just runs areliable embedded OS:
Linux, allowing to remotely reboot theiill

computer or access some part of it for remote
diagnostic.

Example of embedded devices:
Network elements

IP/DVB Gateways

Network storage devices
. (li?,'ﬁlz)
Terminal servers, routers

Terminal server offers 8 serial console ports plus a
modem connection and an Ethernet interface. It
offers secured remote network connections (SSH).
System fitsin 4MB of ROM and runs on 16MB of
RAM.

File servers running Linux and booting from a
ROM can support huge journalized file systems
(300GB) on software raid-5 and recover from a
power outage (they don't crash you know) in 27
seconds. Thiskind of availability makes the user
unaware of the server power-cycle: he just notice
some network slow-down for sometime...

Example of embedded devices:
Home devices

Digital set-top box
Watch

Web screen phones

Internet TV Car MP3 player Vol P phones

Linux is so CPU-cyclesefficient that it fitsin a
watch. It can work in devices with very different
Interfaces, such as aphone or an Internet-ready

TV.

Why embedded Linux ?

Why embedded Linux ?

Proved stability, reliability

@

Uptimes of three years are usual on computers
running GNU/Linux or other free OS (FreeBSD).
Systems can be updated, softwares can be
Installed/uninstalled, drivers can be
|oaded/unloaded without a system reboot.

Groups are even working on ways to upgrade the
entire Linux kernel without interrupting the system
at all (without reboot) !

The system is not suffering from memory leaking,
Improper memory protection or uptime limitations.

Why embedded Linux ?

Proved stability, reliability

— The largest uptime of aLinux system is 1062 days in
average for the last tree reboots (www.rinri-jpn.or.jp)

&

Largest up-time systems on the Internet (about 4
years of uninterrupted service in average on the
last 3 reboots) is achieved by BSD and Linux

systems only.

Why embedded Linux ?

Proved stability, reliability

— The largest uptime of aLinux system is 1062 days in
average for the last tree reboots (www.rinri-jpn.or.jp)

— What about the 48.7 days bug of WIinNT ?

&

Some years ago, Microsoft recognized an
uncorrectable bug (part of the specs actually) in
WINNT 4 that prevents such a system to run
reliably longer than 48.7 days. Nobody notice,
because Microsoft OSes are so unstable and
memory-leaking that it is admitted that such a
system crashes from time to time. Such a bug
would be immediately noticed by Unix-like system
administrators, because those systems have typicd
uptimes of several years.

Why embedded Linux ?

Proved stability, reliability

— The largest uptime of aLinux system is 1062 days in
average for the last tree reboots (www.rinri-jpn.or.jp)

— What about the 48.7 days bug of WIinNT ?
— Clugtered Vol P router

&

A Microsoft partner producing VolP gatekeepers
presented in 2000 its product, proud of its stability:
It was based on a clustered embedded WINNT
system. The justification of the speaker was: ‘'under
this heavy work load, each of the node gets
crashed in average once per day. But thanks our
cluster architecture, the other node is keeping the
services. The crashed node takes less than 3
minutes to reboot, so that the probability of having
the two nodes crashed simultaneously is very low,
providing avery reliable service.’

Incredible, isn't it ? He was proud of using a
buggy, unreliable OS.

Why embedded Linux ?

Proved stability, reliability

— The largest uptime of aLinux system is 1062 days in
average for the last tree reboots (www.rinri-jpn.or.jp)

— What about the 48.7 days bug of WIinNT ?
— Clustered Vol P router
— Embedded systems are not supposed to be rebooted

@

Uptimes of three years are usual on computers
running GNU/Linux or other free OS (FreeBSD).
Systems can be updated, softwares can be
Installed/uninstalled, drivers can be
|oaded/unloaded without a system reboot.

Groups are even working on ways to upgrade the
entire Linux kernel without interrupting the system
at all (without reboot) !

The system is not suffering from memory leaking,
Improper memory protection or uptime limitations.

Why embedded Linux ?

Proved stability, reliability
Proved security

@

Lloyds insurance fees are 30% lower to cover
security attack risks on Linux-based systems than
on Microsoft ones, as example.

TIS recommends instalation of its Gauntlet
firewall on BSD or Linux instead of proprietary
OS because of the proved and verifiable security of
their network stack, among others.

Security fixes are often available within few days
on free software, while they are sometimes not
made available at all on some proprietary OS.

Why embedded Linux ?

Proved stability, reliability
Proved security
|'s ported on about any platform

@

Linux is ported on ARM, Mips, PowerPC, Sparc,
Alpha, Intel 386, 486, Pentium I, Pentium 11,
Pentium [11, Pentium 1V, |A 64, lots of micro-
controllers, ...

If you have an another platform, port might be
aready available, or you can port it yourself:
you're free!

Why embedded Linux ?

Proved stability, reliability
Proved security

|'s ported on about any platform
— Linux for X-Box (since 3/9/2002)

Examples of port of Linux:

Linux is available since 3/9 on Microsoft's XBox,
despite an architecture dedicated to prevent
execution of softwares not approved by Microsoft.

Why embedded Linux ?

Proved stability, reliability
Proved security

|'s ported on about any platform

- Linux for X-Box
— Linux for Cisco routers

@

Belgacom has ported Linux on Cisco's proprietary
routers architecture to enjoy the functionaities and
reliability of Linux.

Why embedded Linux ?

Proved stability, reliability
Proved security

|'s ported on about any platform

- Linux for X-Box
— Linux for Cisco routers
— Linux for Pam, Pocket PCs, ...

&

Linux has been ported on hardware that have not
even the required functionalities to support Linux:
Linux is a demand-paging, virtual memory OS that
uses memory protection and dynamic address
trandation provided by the underlaying hardware
(state-of-the art in operating systems). PAm PDAs
hardware does not provide those services, but
Linux is however available on it.

Linux runs also on Pocket PCs such as | Pag.

Why embedded Linux ?

Proved stability, reliability
Proved security

|'s ported on about any platform

— Linux for X-Box

— Linux for Cisco routers

— Linux for Palm, Pocket PCs, ...
— Linux asfirst OSready for IA64

&

Intel gaveto the Linux kernel devel opment
community the specifications and a simulator of
the future |A64, the 64 bits Intel processor.

On thefirst day this processor was avail able,
Linux was ready for it and ran. It wasthe only OS
available on |A64 at that time.

Why embedded Linux ?

Proved stability, reliability
Proved security

|'s ported on about any platform
Exists areal-time kernel patch

@

The Linux kernel is not especially designed for
rea-time services. However, a patch exist in order
to replace the kernel scheduler by areal-time one.

Why embedded Linux ?

Proved stability, reliability
Proved security
|'s ported on about any platform

Exists areal-time kernel patch
— Non RT kernel givesreal-time services

&

But the unpatched kerndl offers already pseudo-
rea-time system calls, such as timers and watch-
dog support.

Why embedded Linux ?

Proved stability, reliability
Proved security
|'s ported on about any platform

Exists areal-time kernel patch

— Non RT kernel givesreal-time services
— Non RT kernel has 100 ps accuracy

@

Our experience using Linux in real-time
applications is that non patched kernel can respect
timings so tiny as 0.1 ms, which is already very
good result. In comparison, Windows systems
have an accuracy of 10ms.

A car at 120 Km/h rides 30cm in 10ms while it
ridesonly 3mm in 0.1 ms. The difference in the
case of embedded security systemsisobvious.

Why embedded Linux ?

Proved stability, reliability

Proved security

|'s ported on about any platform

Exists areal-time kernel patch

Can be tailored to match specific embedded needs

@

Production of a dedicated kernel supporting
exactly the services required by an embedded
application is provided by Linux from day one.

Why embedded Linux ?

Even agraphical interface is provided to choose
what should be part or not of agiven kernel.
Production of a dedicated kernel is easy to do.

@

Options are numerous. under the | P stack option,
lots of elements are available for choices. Please
note that this snapshot is partial. Other options are
available above and below this partial list.

Why embedded Linux ?

Proved stability, reliability

Proved security

|'s ported on about any platform

Exists areal-time kernel patch

Can be tailored to match specific embedded needs

An OS aupporting Ethernet, 1Pv4, IPv6, Ethernet,
PPP, Serial, PCI, Bootp, DHCP, compressed
ROMFS, USB, JFS, IDE, ... fitsin 360 KB.

A sharewareusing .NET" requires 300MB of libs...

I build a Linux kernel image for an embedded project choosi ng exactly what | needed. The image of the OS is 360KB. It
perfectly fitsin an embedded system ROM.

Compared with this, it shows the importance of the choice of an OS:

Hello. Je vous trouve trés gentil avec MS. Moi, je n'y arrive plus. En fait, je suis programmeur VB depuis QB 2.0. Je suis passépar QB 2.0, QB 4.5, MSPDS 7.0, VB DOS 1.0, VB WIN 2.0,
VB WIN 4.0, VB WIN'5.0, VB WIN 6.0.... A I'époque, j'avais fais un peu de C, de C++ et del'assembleur (foublais : un peu de GWBASIC aussi!) sans pouvoir décrocher de la
famille du basic a cause de son enorme facilité de dev rapide et ce malgré ses problémes de mémoire et de vitesse.

Jai attendu longtemps davoir un VB7 et aujourd'hui, je peux vous dire que je suis trés décu. Au point que jeviens de changer delangage en chaisissant borland c++6.0 Builder. J'aime
pas delphi, c'est pas forcement logique mais surtout viscéral.

Pourquoi suis-je décu ? J'ai bien sur regu les bétas de .NET, j'ai fais un peu de dev dessus puis j'ai arrété, non sans prendreun abonnement MSDN pour &tre sur davoir la version finale
des qu'elle sort.

Et des qu'elleest sortie, je mesuis mis sur un projet perso plutdt technique et complexe - vu la forcede .net, jeme suis dis que je pouvais mettre le paguet : un gros logiciel d'analyse
graphique pour la bourse

Trés bien. Jecommenceet a part quelques problémes de clarté dans lelangage a propos des déclarations valeur/ référen ce, tout va bien.... Et japprécie énormément le comilateur intégré

qui permet de recompiler du langage VB.NET depuis un exécutable .NET - Ca permet @ mes utilisateurs de programmer eux méme des courbes graphiques et en plus ca
compile

Seulement, quand je commence a affich er une dizain e de courbes graphiques calculées en temps réel, je me rend compteque letruc va franchement pas assez vite et qu'il sera
rapidement dépassé, je cherch e des solutions, jepleure sur les NG de microsoft, j'obtient qu elques réponses quej'applique a mon programme, ga s'am éliore un peu mais
finalement ¢a me convient toujours pas. Pour palier définitivement a ce probléme, j'utilise la bibliothéqu e de compatibilité .NET / VB et je dessine mes graphiqu es en utilisant

DirectX8. La plus de problémes, ca booste. La lenteur provient donc bien de GDI+. Bon, jeme sens pas trés bien quand méme parce que ga m'oblige a distribuer le framework :
20 méga, DirectX 8 : environ 10 mega, mon programme : 300ko.

Par acquis de conscience, je fais un test d'installation de tout ga sur un windows 98 formaté. Je copie lenecessaire : .NET framework redist, DirectX 8.0 et mon programme.

Je double clique sur .net framework installation et vian premier message : il faut IE6 pour installer le truc. Resultat: Je télécharge IE6 : 80 mega

Je linstalleet jinstalle e framework: premier reboot. Jinstalle DirectX

deuxieme reboot. Je cliquesur mon programme pour le lan cer :

il manque MDAC (pour les bases de donn ées). je télécharge MDAC 2.6 et jinstalle : troisiémereboot. Je clique a nouveau sur mon programme, il manque MS-JET 4.0 (Gestion des bases
de données Access) : Je télécharge: 5 MEGA. Je reclique sur mon programme : il manqu e les bibliot héques de compat VB6 (pour directx) fournies avec VS.NET mais pas avec
le framework. J'in stalle les bibliothéques et enfin mon programme marche. Mais sacrée galére quand méme.

Pour fairetourner un programme de 300 ko sur un postew98 vierge, j'ai du installer environ 120mega de programmes compressés. Clest pas mal pour un programme que je veux
distribuer en shareware Il Absurde !1!

Si le framework est bien en substance, il se train e des tares monstres. Ceest & dire qu'il faut quasiment distribuer une version .net de windows pour un programme de 300ko. De plus, il

est franchement trop lent. Si sur de nombreux points, il est plus rapide que VB, je suis persuadéque sur d'autre il I'est moins. Tout ceci, m'a dégouté et mefait changer de
langage, avec regrets mais sans choix.

Jai aussi testé ASP.NET et je peux vous dire que mes programmes fait en ASP 2.0 était compilé et tournaient trés vite car jutilisais ASP uniquement comme passerelle de qu elques lignes
pour lancer des DLL ActiveX. De ce point devue, ASP.NET ne révolutionne rien pour moi. La compilation existait déja bien avant. Concernant les WEB Controles, ils n'ont
aucun interet, si ce n'est defaireramer I'application web. En effet, ces controles se comportent comme les contréles d'un e applications windows classique: ils déclenchent des
événements qui sont immédiatement renvoyés vers le serveur mais avec I'énorme probléme que cela passe par internet et que ca ralentit grave. En intranet, ca peut étre
interessant, mais sur internet : zéro. On en revient ala programmation classique de site web, mais avec |I'avantage évident de pouvoir programmer avec de vrais langages :
VB.NET, C# et bient6t DELPHI.NET, c'est quand méme bien pour ¢a, ceslangages sont nettement plus évolués queles anciennes versions d'ASP. Par contre, programmer un
site web avec .NET, c'est pas unesinécure car 1) VSNET rame lourdement et I'altern ative WEBMATRIX n'en est pas une car elle est trop limité : pas d'intellisense, pas de mise
en formede la syntaxe, etc. Ensuite, il faut au minimum windows xp pro ou windows 2000 et bien sur 1S version 5 minimum. Auparavant, on pouvait créer son site web avec

PWS (personal web server) gratuitement et sous win dows 98. Donc financiérement, c'est pas lameéme histoirenon plus. En revanche, le concept des web services semble trés
intéressant pour les applications distribuées

En conclusion, & I'heure actuelle il apparait évident que .NET n'est pas adapté au developpement d'applications windows critiques, rapides, portables entre différentes versions de
windows, & des distributions grand public par intern et sous forme de sharewares ou freeware, etc

Il apparait, par contre, etre uneévolution sérieuse du langage ASP en permettant la programmation sous différents langages de sites web et integreles controles web pour des
applications intranet. Ou encore des applications distribués via les services web.

Cest donc plutdt un produit qui vise plutot les entreprises. L'installation du framework sur tous les postes serait un véritable plus dans de nombreux cas malgré Iim portante mise a jour
necessaire. Si l'on devait faire unecomparaison avec Java, jedirais que si Java n'avait pas la portabilité quil a, il serait écrasé par par letrio Visual Studio.NET / .NET
Framework / C# mais comme ce n'est pas le cas, les choses sont différentes. Dans le cas ou I'on le poid du déploiement des outils ne pose pas de probleme et que la plate
formecible est windows/internet, .net reste l'outil de premier choix. Dans le cas contraire, il faut utiliser Java sans discu ter

Quand amoai, je respecte cette facon de voir, et j'ai choisi borland Builder c++ car il dispose d'outils rad inexistants ailleurs quechez microsoft. En effet, BC++ Builder permet de
struireune appli dela méme facon qu'avec vb.net. La bibliothéque fournie avec Borland C++Builder version entreprise est plus riche que celle de.net. par ailleurs, les
applications produites avec Borland C+Builder sont rapides et portables (lin ux windowse5,98,etc). Il est d'ailleurs fort probable queje chan ge de plate forme pour linux pour
des raisons économiques: la dependan cemicrosoft revient chere (notament a cause des licences)
Mémesi j'ai évité les aspects purement techniques, j'espére avoir apporté un peu delumiéresur .net.

A+

Why embedded Linux ?

Proved stability, reliability

Proved security

|'s ported on about any platform

Exists areal-time kernel patch

Can be tailored to match specific embedded needs
The YOPY kernel+base applications fitsin 24 MB

(OS, X-Window, base applications...)
-n“
("inia"‘)

As example, the commercial PDA called Y opy,
has a total memory of 64MB. The OS, base
applications such as graphical interface,
multimedia player, web browser, e-mail client,
games, shell, ... fitsonly in 24 MB of RAM.

Why embedded Linux ?

Proved stability, reliability

Proved security

|'s ported on about any platform

Exists areal-time kernel patch

Can be tailored to match specific embedded needs

| s maintained, ported by the community
@)

Linux was created in 1991. The evolution of this
OS was s0 fast, due to the Internet community
support, that it supplanted Hurd (the free OS
developed by the FSF) and it evolved to the best
OS available, forcing IBM to port Linux to all its
platforms from the desktop to the mainframe.

(Some NASDAQ IBM mainframes are running
Linux)

Why embedded Linux ?

Proved stability, reliability

Proved security

|'s ported on about any platform

Exists areal-time kernel patch

Can be tailored to match specific embedded needs

| s maintained, ported by the community
@)

Isfree
Meaning that for companies that sells hardware
(not software), they have the tota freedom to
access the embedded OS source code, to correct it,
adapt it, tune it and use it on as many systems as
they want for free, receive for free updates, bug
fixes, security fixes, ...

Why embedded Linux ?

Proved stability, reliability

Proved security

|'s ported on about any platform

Exists areal-time kernel patch

Can be tailored to match specific embedded needs
| s maintained, ported by the community

|sfree

|s very efficient in memory and CPU usage (li?,%alﬂ)

Tests made by Oracle and newspapers shows that
on the same hardware, Linux is in average about
30% more efficient than Microsoft OS.

A Linux-based router running G703 2Mb/sline,
plus | EEE 802.1q vlan tagging on afast-Ethernet
line, plus SDL S on PPPoE, plus firewalling,
routing, Network Address Trandation, web proxy
service, file and graphical desktop service plus
other services (SNMP, NTP, FTP, NFS, ...) fitsin
128MB of ram. No swap is required.

Why embedded Linux ?

Proved stability, reliability

Proved security

|'s ported on about any platform

Exists a real-time kernel patch

Can be tailored to match specific embedded needs

| s maintained, ported by the community

|sfree

|s very efficient in memory and CPU usage @
|s designed to work without graphical interface

Linux can be configured to offer all services
(including remote GUI) on system having no
graphical interface! Embedded devices, such as
routers, MP3 players, set-top boxes, car radios...
can be fully accessed, maintained, debugged
through a ssmple Ethernet or serial interfaces.

Strategic considerations

Anti-competitive proprietary OSes

&

Proprietary OSes can have anti-competitive
behaviors such as hiding APIs, changing
Implementations from update to update to prevent
competitors software to be supported, hide some
hardware specifications to prevent competitor's
product to use it, not support some interface that
dd not pay an entrance fee, Integrate
undocumented services to their 'OS to give
advantage to their own software against
concurrents.

Strategic considerations

Anti-competitive proprietary OSes
— The Office Suite example

&

Microsoft finally admitted that hidden APIs were
part of Windows OS suite to give advantage to
MS-Office. Too late: there isn't acommercial
dternative to MS-Office on Windows any more.

Strategic considerations

Anti-competitive proprietary OSes
— The Office Suite example
— The web browser example

@

The market of commercial web browsers is out.
Microsoft integrated this functionality in its OSes
against lega decisions (Microsoft was already
condemned before launch of Windows-95 for this).
Developing a commercial product based on
Windows means that you play a game against an
opponent that rules the game, changes the rules
during the game & does not respect them.

Strategic considerations

Anti-competitive proprietary OSes
— The Office Suite example

— The web browser example
— The Palm example

&

Pam since 2000 does not support anymore
synchronization between its PDAs and |aptops by
IR interfaces because Microsoft changed the way
this device was handled by Windows since
Win2000 and refuse to disclose the way to useiit.

Knowing that Microsoft decided to enter the PDA
market, it's not strange to see them refusing such
an information to their main concurrent on that
market. Such a behavior has a name: it abuse of
dominant position to extend monopoly to other
markets. It is strictly illegad but when it will be
ruled, Palm will be out of the market since years.
Take this as example and avoid any link with
proprietary OSes for your embedded business, if
you don't want to be out in short term.

Strategic considerations

Anti-competitive proprietary OSes
Anti-competitive proprietary protocols

&

Same applies to protocols. As soon as a proprietary
protocol is used, the dependency to the legal owner
of the protocol is tota. That's why
telecommunication standards have always been
published and interoperable between various
manufacturers; GSM are using a standard to
communicate, TVs are al usng same published
process to reproduce pictures, phones of any
trademark are usable on public phone network,
success of the Internet is based on published IP,
TCP, UDP, HTML standards, success of CDs is
due to the publication of the standard by its
creator.

Strategic considerations

Anti-competitive proprietary OSes
Anti-competitive proprietary protocols
- Media-player

&

Media-player is a video signal streaming format
that is NOT published, not interoperable, forces
the customer to purchase proprietary OS, forces
the service provider to purchase proprietary
streamer... It's exactly the opposite of a standard
and is dangerous because it concentrate control on
multi-media services in the hands of a single
monopolist. Could we accept a single company to
control totally the telecommunication market ?

Strategic considerations

Anti-competitive proprietary OSes
Anti-competitive proprietary protocols
- Media-player
- CIFS

&

Instead of supporting standardized file transfer
protocols such as FTP, NFS, HTTP file transfer
protocol, ... Microsoft preferred to use the CIFS
published standard. Because this alowed
interconnection between Windows-based system
with other systems running CIFS services,
Microsoft changed progressively the CIFS
Implementation so that it is no more a standard.
Even the famous open-source CIFS
Implementation that follows those changes is
forbidden to use by Windows licenses. Microsoft
hates interoperability, prevents it by changes in its
proprietary protocols and if it's not enough,
prohibit interoperability by license terms.

Strategic considerations

Anti-competitive proprietary OSes
Anti-competitive proprietary protocols
- Media-player
- CIFS

Strategic considerations

Anti-competitive proprietary OSes
Anti-competitive proprietary protocols

=> Avoid using proprietary elements under control
of (potential, future, actual) concurrents !

&

Integration of proprietary elementsin an embedded
system puts lethal dependency on potential or
actual concurrents. Examples are numerous: in mid
or long-terms, this will put you out of business
because of illegal anti-competitive behaviors.
More than that, EC directive demand publication
of tedecommunication standard when used on
public network and targeting public audience. Use
of proprietary protocols or systems supporting only
proprietary protocols is to be avoided by principle
and by law.

Strategic considerations

Anti-competitive proprietary OSes
Anti-competitive proprietary protocols

=> Avoid using proprietary elements under control

of (potential, future, actual) concurrents !
Counter examples:

Strategic considerations

Anti-competitive proprietary OSes
Anti-competitive proprietary protocols

=> Avoid using proprietary elements under control
of (potential, future, actual) concurrents !

Counter examples:
Sony's success with Sony PlayStation ||

@

Sony is not out of the game console business
because it has chosen to build it's embedded
system on non proprietary system and they
develop their game on Linux. They have the
control of their hardware and software platform.
They don't depend on concurrent's proprietary
parts.

Strategic considerations

Anti-competitive proprietary OSes
Anti-competitive proprietary protocols

=> Avoid using proprietary elements under control
of (potential, future, actual) concurrents !

Counter examples:
Sony's success with Sony PlayStation ||
Ericsson & Nokiausing Java technology on GSM

@

Ericsson and Nokia understood that the proposed
OS for GSMs by Microsoft cannot be used by
them. If they take that aternative, Microsoft will
sell all GSMs within next few years. They have no
choice but using standard systems and protocols
not under control of a proprietary software vendor:
they have chosen Java as software platform for
their next generation GSMs.

Strategic considerations

Anti-competitive proprietary OSes
Anti-competitive proprietary protocols

=> Avoid using proprietary elements under control
of (potential, future, actual) concurrents !

Counter examples:
Sony's success with Sony PlayStation ||
Ericsson & Nokiausing Java technology on GSM

@

Strategic considerations

Strategic considerations
Stay hardware independent: use a multi-platform OS

@

In order to be ready for new emerging hardware
and keep the possibility to change of hardware if
useful, in order to be in good postion for the
negotiation with hardware manufacturer, the
choice of an OS and software suite that is portable
must be done.

Strategic considerations
Stay hardware independent: use a multi-platform OS
Stay vendor independent: use multi-vendor OS

@

In order to be vendor-independent, choose an OS
that is sold by multiple distributors. The same
product (Linux) is proposed in more than 200
different distributions. Prices are variable:

* RedHat Linux professional isaround 275 USD.
* Suse Linux professional is around 40 EUR.
* Some distributions are available gratis.

Strategic considerations
Stay hardware independent: use a multi-platform OS
Stay vendor independent: use multi-vendor OS
Stay OS independent: use standard AP, libs, tools, ...

&

It is possible with a bit of attention to develop
software that does not contain Linux-specific code.
Ex: Ansi-C, C++ with TCL/Tk graphicd interface
based on GLIB, or Perl, Java, ... applications can
run on as many platforms as Linux, FreeBSD,
NetBSD, OpenBSD, Solaris, MaxOS X, Win95,
Win98, Win2000, WinNT3.51, WinNT4, WinXP,
HP-UX, IRIX, AlX, True64, Hurd, ...

This way, the project remains highly independent
of a specific OS. If some Linux-specific code is
required, locate it in a documented specific part of
the code (OS adaptation layer module) so that port
will be easier.

Strategic considerations

Stay hardware independent: use a multi-platform OS
Stay vendor independent: use multi-vendor OS

Stay OS independent: use standard AP, libs, tools, ...
Keep business freedom: no export regulations in licenses

&

Keep your business market as open asthe world is.
In some proprietary OS licenses, there are
exportation regtrictions. There is no guarantee the
list of banned countries will not change, so using
those softwares in an embedded application gives
the control of a foreign country on the market you
can work on.

Some US exportation regulations also limit the
functionalities of software, even for European
Union: security is treated differently for exported
software than for loca ones. Do we have to accept
that products we sell must be less secure than
concurrent ones ? Is this difference limited to

security ? Will it remain limited to security issues
?

Strategic considerations
Stay hardware independent: use a multi-platform OS
Stay vendor independent: use multi-vendor OS
Stay OS independent: use standard AP, libs, tools, ...
Keep business freedom: no export regulations in licenses
Keep your customers base secret: no mandatory OS registrations

&

In order to protect your business against unfair
competitors, it is important to keep secrecy about
your customers. OSes or other proprietary software
that requires on-line registration snhows to
(potential) competitors the list of your embedded
application customers, gives as much information
as the proprietary OS vendor wants to know.

Strategic considerations
Stay hardware independent: use a multi-platform OS
Stay vendor independent: use multi-vendor OS
Stay OS independent: use standard AP, libs, tools, ...
Keep business freedom: no export regulations in licenses
Keep your customers base secret: no mandatory OS registrations
Be ready for new emerging platforms

&

Evolution to new emerging platforms, such as
Hurd or L4 is not a problem when using sandard
APIs and programming languages.

New OSes such as Hurd or L4 are using the same
standards: Posix processes and inter-process
communication mechanisms, support of the GLIB
library and Ans-C programming language. All
other tools, such as other programming language
compilers or interpreters are then portable on those
new OSes, as well as graphical interfaces and other
applications. In other words, if you develop on
Linux, you're ready for OSes that are not yet
available.

Strategic considerations

Stay hardware independent: use a multi-platform OS

Stay vendor independent: use multi-vendor OS

Stay OS independent: use standard AP, libs, tools, ...

Keep business freedom: no export regulations in licenses

Keep your customers base secret: no mandatory OS registrations
Be ready for new emerging platforms

Avoid uncontrolled licenses prices caused by monopolies

&

By choosing proprietary tools (OS, programming
language, libraries, protocols, formats, ...) provided
by asingle vendor, even if the first license price is
low, your bus ness becomes dependent of a single
provider, meaning that the future prices for
licenses or services can raise as high as the
monopolist decides. You have no way to change of
provider (it's unique) but to port your application
to an another proprietary system, or choose an
open platform, interoperable with other systems,
keeping you in good situation for the negotiation
of software and services prices.

Linux is currently the most mature platform giving
thiskind of guarantee: it's free and multi-vendor.

Strategic considerations
Stay hardware independent: use a multi-platform OS
Stay vendor independent: use multi-vendor OS
Stay OS independent: use standard AP, libs, tools, ...
Keep business freedom: no export regulations in licenses
Keep your customers base secret: no mandatory OS registrations
Be ready for new emerging platforms
Avoid uncontrolled licenses prices caused by monopolies
Keep technology control: Accessto all APIs, adapt the kernel...

&

In order to be able to develop the best embedded
applications, access to all the underlaying sources
IS a must: depending on the kind of application,
dight changes to the kernel or some part of it (IP
stack, real-time scheduler, ...) will make the
difference between your product and concurrent's
ones. If the concurrent is using proprietary closed
tools, you have key advantage on it. If the
concurrent is the vendor of a closed proprietary
software suite that you have chosen, you are the
looser.

Strategic considerations
Stay hardware independent: use a multi-platform OS
Stay vendor independent: use multi-vendor OS
Stay OS independent: use standard AP, libs, tools, ...
Keep business freedom: no export regulations in licenses
Keep your customers base secret: no mandatory OS registrations
Be ready for new emerging platforms
Avoid uncontrolled licenses prices caused by monopolies
Keep technology control: Accessto all APIs, adapt the kernel...
Keep up-to-date: Research, high education, new protocols...

&

New standards (such as Internet protocols, new
data formats, ...) are developed by consortiums or
work groups such as the IETF. To develop new
prototypes of protocols implementations, access to
the entire kerne source is required. That's why
new protocols, new data formats are developed as
example by IETF members on Solaris, BSD and
Linux. That's why Linux implemented IPv6 three
years in advance on other proprietary systems.
Linux also implements already IGMPv3, lots of
encryption mechanisms and security features
unknown to other proprietary systems. Linux is
used in universities, research centers... So it is up-
to-date, state of the art OS.

Strategic considerations

Stay hardware independent: use a multi-platform OS

Stay vendor independent: use multi-vendor OS

Stay OS independent: use standard AP, libs, tools, ...

Keep business freedom: no export regulations in licenses

Keep your customers base secret: no mandatory OS registrations
Be ready for new emerging platforms

Avoid uncontrolled licenses prices caused by monopolies

Keep technology control: Accessto all APIs, adapt the kernel...
Keep up-to-date: Research, high education, new protocols...
Avoid OS that has aforeign intelligence agency back-door in it

&

It is wdl known and has been admitted that
Windows systems contains a back-door allowing
US intelligence services to enter any computer
running this kind of software and connected to a
network. Development of embedded applications
on such a system is dangerous for dtrategic
reasons. let's imagine all TV sets, al phones, al
cars in Europe running this kind of software. What
about our independence, our freedom of choice,
especialy if they diverge from those of US ?

More than that, those kind of OS might be in short
or mid-term forbidden by EU authorities for
obvious security reasons.

Strategic considerations
Stay hardware independent: use a multi-platform OS
Stay vendor independent: use multi-vendor OS
Stay OS independent: use standard AP, libs, tools, ...
Keep business freedom: no export regulations in licenses
Keep your customers base secret: no mandatory OS registrations
Be ready for new emerging platforms
Avoid uncontrolled licenses prices caused by monopolies
Keep technology control: Accessto all APIs, adapt the kernel...
Keep up-to-date: Research, high education, new protocols...
Avoid OS that has aforeign intelligence agency back-door in it
Avoid OSthat areforbidden by states or administrations o

&

So when choosing proprietary OS or software tools
for an embedded application, it must be known
that some states or organizations are aready
banning some systems. As example, German army
bans use of Microsoft systems in military
applications. Other countries, such as China, Peru,
UK are following the same direction.

Strategic considerations
Stay hardware independent: use a multi-platform OS
Stay vendor independent: use multi-vendor OS
Stay OS independent: use standard AP, libs, tools, ...
Keep business freedom: no export regulations in licenses
Keep your customers base secret: no mandatory OS registrations
Be ready for new emerging platforms
Avoid uncontrolled licenses prices caused by monopolies
Keep technology control: Accessto all APIs, adapt the kernel...
Keep up-to-date: Research, high education, new protocols...
Avoid OS that has aforeign intelligence agency back-door in it
Avoid OSthat areforbidden by states or administrations o

&

Conclusion

Conclusion

Linux givesyou all strategic guarantees

Conclusion

Linux givesyou all strategic guarantees

Linux is efficient, reliable, tailorable, portable,
up-to-date, secure, fast evolving, widely
supported, real-time ready, embeddable, |ow-cost,
implement standard protocols, supports portable
APIs, use few memory, does not require GUI...

&

Conclusion

Linux givesyou all strategic guarantees

Linux is efficient, reliable, tailorable, portable,
up-to-date, secure, fast evolving, widely
supported, real-time ready, embeddable, |ow-cost,
implement standard protocols, supports portable
APIs, use few memory, does not require GUI...

Linux isthe OS of choice
for embedded lications
app ':i? o

Links relative to embedded Linux

http://embedded.linuxjournal.com
http://www.embedded-linux.org
http://www.embeddedlinux.com
http://www.embeddedsys.com
http://www.realtimelinux.com

Links to embedded Linux products

http://www.lineo.com

http://www.yopy.com

http://www.cyclades.com
http://lwww.b2c2.com/products/homestreamer.htm
http://lwww.penguincomputingom
http://hippoinc.com

http://www.chl.com

http://www.opentv.com (li?,%ale)

Embedded systems:. strategic issues

http://BFrere.net/linuxdays2002

Questions ?

Embedded software: strategic issues

(’%5
linige

