
Embedded software: strategic issues

Embedded software: strategic issues

Brent Frère,

LiLux

Linu x Days 2002

Some definitions

Some definitions

� Free Software

Free software does not means 'gratis software' but
software respecting the following principles:

Some definitions

� Free Software
– Freedom 0: Freedom of execution

Whenever country you are in.
For whatever environment: business, private,
educational purpose. Free Software doesn't mean
'non commercial '. Examples of commercial free
software: Linux distributors (Suse, RedHat,
Mandrake, Caldera, Slackware...), MySQL, IBM...
Whenever the purpose of the execution is.
Whatever the power of the executing host is.
Even if the software is used concurrently by
numerous users.

Some definitions

� Free Software
– Freedom 0: Freedom of execution
– Freedom 1: Freedom to adapt, modify, study the soft

Implies the availability of the sources.
Allows learning process. Learning computer skills
on a closed systems is not learning: it's training
how to use commercial product.
Allows adaptations for a specific use.
Allows fast correction process.
Prevents spy code, secret back-doors.
Enhance security by white-box testings, and fast
security fix availability.

Some definitions

� Free Software
– Freedom 0: Freedom of execution
– Freedom 1: Freedom to adapt, modify, study the soft
– Freedom 2: Freedom to distribute copies

For free or against a fee.
Free software doesn't mean 'gratis'.
The copies must be distributed under the same
license terms, in order to guarantee the software to
remain free.

Some definitions

� Free Software
– Freedom 0: Freedom of execution
– Freedom 1: Freedom to adapt, modify, study the soft
– Freedom 2: Freedom to distribute copies
– Freedom 3: Freedom to enhance the soft

You can modify the software, enhance, add
functionalities and distribute the new obtained
version under the same license terms.

Some definitions

� Free Software
� Free-Software foundation

Created by Mr Richard Stallman in 1985,
originator of the 'Free Software' concepts. This
organization created the 'CopyLeft', GPL and L-
GPL licenses, and has developed the GNU project.

GNU/Linux is a complete software solution using
Linux as free operating system (kernel) and free
GNU tools on it.

Some definitions

� Free Software
� Free-Software foundation
� Open-Source

Open Source is a newer organization that uses
'Open' instead of 'free' to avoid confusion between
free in the expressions
* free beer
* free entrance

Some definitions

� Free Software
� Free-Software foundation
� Open-Source

– Not only access to the sources

Open source does not only mean access to the
sources.

Some definitions

� Free Software
� Free-Software foundation
� Open-Source

– Not only access to the sources
– Slight changes compared with Free Software:

 It actually gives the same rights as the 'Free
software' but with some differences:

Some definitions

� Free Software
� Free-Software foundation
� Open-Source

– Not only access to the sources
– Slight changes compared with Free Software:

� Distribution of modified copies may be restricted

The distribution of modifications can be limited to
patches. This does not harm the freedom of
changing the source and distributing the modified
software but force some respect to the original
version of the software, avoiding various slightly
different versions to be distributed under the same
name and version number.

Some definitions

� Free Software
� Free-Software foundation
� Open-Source

– Not only access to the sources
– Slight changes compared with Free Software:
– GPL is compliant with Open-Source definition

Actually, the most famous license of the 'free
software world' (the GPL) is compliant with Open
Source principles.

Some definitions

� Free Software
� Free-Software foundation
� Open-Source
� Standards

A standard is not a widely used format or protocol:
it is
* Published
* Exist in multiple independent implementations
* Is interoperable between different systems

Ex: IP, HTML, ...
Counter examples: Autocad, Word, Media-
Player...

Situation in embedded software world

Situation in embedded software world

� Large amount of processors, micro controllers

There exists a huge amount of different hardware
architectures, including various processors or
micro-controllers, busses, interfaces, ...

Situation in embedded software world

� Large amount of processors, micro controllers
� Numerous hardware architectures

Embedded systems means usually an architecture
that must fits the requirements of the application,
no more, no less, and be low cost for large series
industrial production. This leads to about as much
architectures as embedded applications.

Situation in embedded software world

� Large amount of processors, micro controllers
� Numerous hardware architectures
� Lots of different interfaces

Embedded systems have usually various interfaces
(or even about no interface, such as a car alarm).
When thinking about a Internet-ready home TV
and a router, it is clear that the nature of the
interfaces are not exactly the same.

Situation in embedded software world

� Large amount of processors, micro controllers
� Numerous hardware architectures
� Lots of different interfaces
� Real-time, preemptive multi-tasking support required

Most of the time, embedded applications are
supposed to react in a given, limited, controlled
amount of time (as example an ABS system
embedded in a car) and perform multiple tasks at
the same time. Real-time services and preemptive
multi-tasking is thus required.

Situation in embedded software world

� Large amount of processors, micro controllers
� Numerous hardware architectures
� Lots of different interfaces
� Real-time, preemptive multi-tasking support required

� Many proprietary embedded systems

Consequence: the embedded systems world has
known a huge amount of different proprietary
embedded OS and software suites.

Situation in embedded software world

� Large amount of processors, micro controllers
� Numerous hardware architectures
� Lots of different interfaces
� Real-time, preemptive multi-tasking support required

� Many proprietary embedded systems
� High cost for a proprietary system maintenance

Because of they were proprietary and non-
compatible, the cost of development of drivers for
new interfaces, the cost of port to new
architectures, ... was not shared among large
number of customers, leading to high prices for
such dedicated embedded systems.

Situation in embedded software world

� Large amount of processors, micro controllers
� Numerous hardware architectures
� Lots of different interfaces
� Real-time, preemptive multi-tasking support required

� Many proprietary embedded systems
� High cost for a proprietary system maintenance
� Requires efficiency, portability, standardization

So the embedded system we need requires
efficiency (low CPU and memory use), portability
(sharing the development costs on all the
platforms) and standardization (for strategic
reasons but also to lower the price)

Situation in embedded software world

� Large amount of processors, micro controllers
� Numerous hardware architectures
� Lots of different interfaces
� Real-time, preemptive multi-tasking support required

� Many proprietary embedded systems
� High cost for a proprietary system maintenance
� Requires efficiency, portability, standardization

Embedded Linux

The embedded software suite of choice is Linux,
as we will see in the next slides.

Example of embedded devices: PDAs

Numerous PDA vendors (in Asia) are basing their
systems on Linux, with the advantage that huge
amount applications (games, web browsers, word
processors) are already available for free.

Linux runs on Mips, ARM, ... Cross-compilation is
not an issue. Stability of Linux allows the system
to go to 'sleep mode' when not used, so the system
is actually never rebooting. This is for sure not
possible with OS that requires reboots to change
settings, install software or suffer from memory
leakings...

Example of embedded devices:
Single board Pcs

Single board PCs are ready for embedded
applications. From few EUROs, you can purchase
a complete computer, with USD, IDE, Serial,
Ethernet interfaces. Linux can be used with only a
serial interface as console.

Example of embedded devices:
Remote management PCI-cards

In order to remotely manage hosts running instable
unreliable OSes, a remote management card can be
used. Often, it just runs a reliable embedded OS:
Linux, allowing to remotely reboot the ill
computer or access some part of it for remote
diagnostic.

Example of embedded devices:
Network elements

Terminal servers, routers

IP/DVB Gateways

Network storage devices

Terminal server offers 8 serial console ports plus a
modem connection and an Ethernet interface. It
offers secured remote network connections (SSH).
System fits in 4MB of ROM and runs on 16MB of
RAM.

File servers running Linux and booting from a
ROM can support huge journalized file systems
(300GB) on software raid-5 and recover from a
power outage (they don't crash you know) in 27
seconds. This kind of availability makes the user
unaware of the server power-cycle: he just notice
some network slow-down for some time...

Example of embedded devices:
Home devices

Digital set-top box

Watch

VoIP phones

Web screen phones

Internet TV Car MP3 player

Linux is so CPU-cycles efficient that it fits in a
watch. It can work in devices with very different
interfaces, such as a phone or an Internet-ready
TV.

Why embedded Linux ?

Why embedded Linux ?

� Proved stability, reliability

Uptimes of three years are usual on computers
running GNU/Linux or other free OS (FreeBSD).
Systems can be updated, softwares can be
installed/uninstalled, drivers can be
loaded/unloaded without a system reboot.

Groups are even working on ways to upgrade the
entire Linux kernel without interrupting the system
at all (without reboot) !

The system is not suffering from memory leaking,
improper memory protection or uptime limitations.

Why embedded Linux ?

� Proved stability, reliability
– The largest uptime of a Linux system is 1062 days in

average for the last tree reboots (www.rinri-jpn.or.jp)

Largest up-time systems on the Internet (about 4
years of uninterrupted service in average on the
last 3 reboots) is achieved by BSD and Linux
systems only.

Why embedded Linux ?

� Proved stability, reliability
– The largest uptime of a Linux system is 1062 days in

average for the last tree reboots (www.rinri-jpn.or.jp)
– What about the 48.7 days bug of WinNT ?

Some years ago, Microsoft recognized an
uncorrectable bug (part of the specs actually) in
WinNT 4 that prevents such a system to run
reliably longer than 48.7 days. Nobody notice,
because Microsoft OSes are so unstable and
memory-leaking that it is admitted that such a
system crashes from time to time. Such a bug
would be immediately noticed by Unix-like system
administrators, because those systems have typical
uptimes of several years.

Why embedded Linux ?

� Proved stability, reliability
– The largest uptime of a Linux system is 1062 days in

average for the last tree reboots (www.rinri-jpn.or.jp)
– What about the 48.7 days bug of WinNT ?
– Clustered VoIP router

A Microsoft partner producing VoIP gatekeepers
presented in 2000 its product, proud of its stability:
it was based on a clustered embedded WinNT
system. The justification of the speaker was: 'under
this heavy work load, each of the node gets
crashed in average once per day. But thanks our
cluster architecture, the other node is keeping the
services. The crashed node takes less than 3
minutes to reboot, so that the probability of having
the two nodes crashed simultaneously is very low,
providing a very reliable service.'

Incredible, isn't it ? He was proud of using a
buggy, unreliable OS.

Why embedded Linux ?

� Proved stability, reliability
– The largest uptime of a Linux system is 1062 days in

average for the last tree reboots (www.rinri-jpn.or.jp)
– What about the 48.7 days bug of WinNT ?
– Clustered VoIP router
– Embedded systems are not supposed to be rebooted

Uptimes of three years are usual on computers
running GNU/Linux or other free OS (FreeBSD).
Systems can be updated, softwares can be
installed/uninstalled, drivers can be
loaded/unloaded without a system reboot.

Groups are even working on ways to upgrade the
entire Linux kernel without interrupting the system
at all (without reboot) !

The system is not suffering from memory leaking,
improper memory protection or uptime limitations.

Why embedded Linux ?

� Proved stability, reliability
� Proved security

Lloyds insurance fees are 30% lower to cover
security attack risks on Linux-based systems than
on Microsoft ones, as example.

TIS recommends installation of its Gauntlet
firewall on BSD or Linux instead of proprietary
OS because of the proved and verifiable security of
their network stack, among others.

Security fixes are often available within few days
on free software, while they are sometimes not
made available at all on some proprietary OS.

Why embedded Linux ?

� Proved stability, reliability
� Proved security
� Is ported on about any platform

Linux is ported on ARM, Mips, PowerPC, Sparc,
Alpha, Intel 386, 486, Pentium I, Pentium II,
Pentium III, Pentium IV, IA 64, lots of micro-
controllers, ...

If you have an another platform, port might be
already available, or you can port it yourself:
you're free !

Why embedded Linux ?

� Proved stability, reliability
� Proved security
� Is ported on about any platform

– Linux for X-Box (since 3/9/2002)

Examples of port of Linux:

Linux is available since 3/9 on Microsoft's XBox,
despite an architecture dedicated to prevent
execution of softwares not approved by Microsoft.

Why embedded Linux ?

� Proved stability, reliability
� Proved security
� Is ported on about any platform

– Linux for X-Box
– Linux for Cisco routers

Belgacom has ported Linux on Cisco's proprietary
routers architecture to enjoy the functionalities and
reliability of Linux.

Why embedded Linux ?

� Proved stability, reliability
� Proved security
� Is ported on about any platform

– Linux for X-Box
– Linux for Cisco routers
– Linux for Palm, Pocket PCs, ...

Linux has been ported on hardware that have not
even the required functionalities to support Linux:
Linux is a demand-paging, virtual memory OS that
uses memory protection and dynamic address
translation provided by the underlaying hardware
(state-of-the art in operating systems). Palm PDAs
hardware does not provide those services, but
Linux is however available on it.

Linux runs also on Pocket PCs such as IPaq.

Why embedded Linux ?

� Proved stability, reliability
� Proved security
� Is ported on about any platform

– Linux for X-Box
– Linux for Cisco routers
– Linux for Palm, Pocket PCs, ...
– Linux as f irst OS ready for IA64

Intel gave to the Linux kernel development
community the specifications and a simulator of
the future IA64, the 64 bits Intel processor.

On the first day this processor was available,
Linux was ready for it and ran. It was the only OS
available on IA64 at that time.

Why embedded Linux ?

� Proved stability, reliability
� Proved security
� Is ported on about any platform
� Exists a real-time kernel patch

The Linux kernel is not especially designed for
real-time services. However, a patch exist in order
to replace the kernel scheduler by a real-time one.

Why embedded Linux ?

� Proved stability, reliability
� Proved security
� Is ported on about any platform
� Exists a real-time kernel patch

– Non RT kernel gives real-time services

But the unpatched kernel offers already pseudo-
real-time system calls, such as timers and watch-
dog support.

Why embedded Linux ?

� Proved stability, reliability
� Proved security
� Is ported on about any platform
� Exists a real-time kernel patch

– Non RT kernel gives real-time services
– Non RT kernel has 100 µs accuracy

Our experience using Linux in real-time
applications is that non patched kernel can respect
timings so tiny as 0.1 ms, which is already very
good result. In comparison, Windows systems
have an accuracy of 10ms.

A car at 120 Km/h rides 30cm in 10ms while it
rides only 3mm in 0.1 ms. The difference in the
case of embedded security systems is obvious.

Why embedded Linux ?

� Proved stability, reliability
� Proved security
� Is ported on about any platform
� Exists a real-time kernel patch
� Can be tailored to match specific embedded needs

Production of a dedicated kernel supporting
exactly the services required by an embedded
application is provided by Linux from day one.

Why embedded Linux ?

Even a graphical interface is provided to choose
what should be part or not of a given kernel.
Production of a dedicated kernel is easy to do.

Options are numerous: under the IP stack option,
lots of elements are available for choices. Please
note that this snapshot is partial. Other options are
available above and below this partial list.

Why embedded Linux ?

� Proved stability, reliability
� Proved security
� Is ported on about any platform
� Exists a real-time kernel patch
� Can be tailored to match specific embedded needs

An OS supporting Ethernet, IPv4, IPv6, Ethernet,
PPP, Serial, PCI, Bootp, DHCP, compressed
ROMFS, USB, JFS, IDE, ... f its in 360 KB.

A shareware using '.NET' requires 300MB of libs...

I build a Linux kernel image for an embedded project choosing exactly what I needed. The image of the OS is 360KB. It
perfectly f its in an embedded system ROM.

Compared with this, it shows the importance of the choice of an OS:
Hell o. Je vous trouve tr ès gent i l avec M S. M oi, je n'y ar ri ve plus . En fai t , je su is progr am meu r VB depu is QB 2.0. Je sui s passé par QB 2.0, QB 4.5, M SPDS 7.0, VB DOS 1.0, VB WIN 2.0,

VB WIN 4.0, VB WIN 5.0, VB WIN 6.0... . A l'époqu e, j'avais fais un peu de C, de C++ et de l 'assembl eur (j'ou blais : un peu de GWBASIC aussi !) sans pou voi r décr och er de la
fami lle du basic à cause de son enor me fac ili té de dev r api de et ce malgré ses problèm es de mém oi re et de vi tesse.

J'ai at tendu longtem ps d'avoir u n VB7 et auj ou rd'hu i, j e peu x vou s dir e que je su is très décu. Au poin t que j e vi ens de changer de l an gage en choi sissan t borl an d c++ 6.0 Bu il der. J 'aime
pas delph i, c'est pas for cem ent logique m ai s sur tout vi scér al .

Pour quoi suis -je décu ? J 'ai bi en sur r eçu l es bétas de .NET, j'ai fais un peu de dev dessu s pu is j'ai ar rêté, non san s pr endr e u n abonnemen t MSDN pou r être su r d'avoir l a ver sion fin al e
des qu'el le sort .

Et des qu 'ell e es t sort i e, je m e suis m is sur u n projet perso plut ôt techn ique et com plexe - vu l a force de .net, j e m e sui s di s que j e pouvais m ettre le paqu et : un gr os logi ciel d'analyse
graphi qu e pour l a bou rse

Tr ès bien . Je comm ence et à part quel qu es problèm es de cl ar té dan s l e l an gage à propos des décl ar at i on s valeur / r éféren ce, tout va bien.. . . Et j'appréc ie énorm ément l e com ilateu r in tégr é
qu i perm et de r ecom pil er du langage VB.NET depuis u n exécu table .NET - Ca per met à m es ut i lisateu rs de progr am mer eux m ême des cour bes graphi qu es et en pl us ça
com pile.

Seul ement, quand je com mence à aff ich er une di zain e de cour bes graphi qu es cal cul ées en tem ps r éel , je me r end com pte que l e tr uc va franchement pas assez v ite et qu 'i l sera
rapidem ent dépassé, je ch erch e des solu t ions, j e pl eur e sur l es NG de m icr osoft , j'obt i ent qu elques r épon ses qu e j 'appl ique à mon progr am me, ça s'am él ior e un peu m ai s
fin al ement ça me convi ent tou jou rs pas. Pou r palier défi nit i vem ent à ce problèm e, j'u t il ise la bi bli othèqu e de compatibi lité .NET / VB6 et je dess ine mes graphiqu es en u t il isant
Dir ectX8. La plu s de pr obl èmes , ca booste. La l enteu r provi ent donc bien de GD I+. Bon, j e m e sens pas tr ès bien quand mêm e par ce qu e ça m'obl ige à di str ibuer le fr am ework :
20 m éga, Di rectX 8 : envir on 10 mega, m on pr ogramm e : 300ko.

Par acquis de consci ence, j e fais un test d'ins tal lat ion de tout ça su r un wi ndow s 98 form até. Je copie l e n ecessair e : .NET fr am ework redi st , Di rectX 8.0 et mon program me.

Je dou ble cl ique sur .net f ramew or k i nstall at i on et vlan prem ier message : i l faut IE6 pou r in stal ler l e t ru c. Resul tat : Je tél écharge IE6 : 80 m ega
Je l'i nstall e et j'i nstalle l e f ram ewor k : pr emi er reboot. J'i nstalle D ir ectX :
deux iem e r eboot. Je cli qu e sur m on progr am me pour le l an cer :
il manque MD AC (pour l es bases de donn ées). je télécharge M DAC 2.6 et j'in stal le : t r oi sièm e r eboot. Je cli qu e a nou veau sur mon pr ogramm e, i l manque MS- JET 4.0 (Gest ion des bases

de données Access) : Je tél écharge : 5 MEGA. Je rec lique su r mon program me : il m anqu e les bibl iot hèques de com pat VB6 (pour di rec tx) fou rni es avec VS.NET mais pas avec
le fr am ework . J 'in stal le les bi bliothèques et enf in m on pr ogr amm e m ar che. Mais sacrée gal ère quand m êm e.

Pour fair e tour ner u n program me de 300 ko su r un post e w98 vi erge, j'ai du install er en vir on 120mega de program mes compr essés. C'es t pas mal pou r un progr am me que je veu x
di str ibuer en sharew ar e !!! Absur de ! !!

Si le fr amew or k est bien en su bstance, i l se train e des tares m ons tres . C'es t à di re qu'il fau t qu asi men t di stri buer u ne ver sion .net de wi ndows pour u n pr ogramm e de 300ko. De plu s, il
est f r anchem ent trop l ent. Si sur de nombr eux points, il est plu s r apide qu e VB6, je su is persuadé que su r d'au tre il l 'est m oi ns. Tout ceci , m'a dégou té et m e fait changer de
langage, avec r egr ets mais sans choix.

J'ai au ssi testé ASP.NET et j e peux vous dir e qu e m es program mes fai t en ASP 2.0 étai t com pi lé et tou rn ai ent t rès vi te car j 'u t il isais ASP u niquemen t comm e passerel le de qu elques l ign es
pour l ancer des DLL Act i veX. De ce poi nt de vu e, ASP.NET ne révolu t ionne ri en pou r moi. La compi lat ion exi stait déjà bi en avant. Concer nant les WEB Con troles, ils n'ont
au cun in teret, si ce n'est de fair e r am er l 'appli cat ion web. En effet , ces contrôles se comporten t comm e les contrôles d'un e appli cat ion s w indows classi qu e : ils décl ench ent des
événem ents qui sont im médi atement r envoyés ver s l e serveur m ai s avec l 'énor me pr oblème qu e cela passe par int ernet et que ca r al ent i t grave. En intr anet, ça peut être
inter essant, m ais sur i nter net : zér o. On en r evi ent à la pr ogramm ation cl assique de site web, mais avec l 'avantage évi dent de pouvoir pr ogramm er avec de vrais langages :
VB.NET, C# et bientôt D ELPH I.NET, c'est qu an d m ême bien pour ça, ces l an gages sont n ettem ent plus évolu és qu e l es an cien nes ver sions d'ASP. Par contre, program mer u n
site web avec .NET, c'est pas un e s inécure car 1) VS.NET rame lour dem ent et l 'al tern at i ve WEBMATRIX n 'en est pas une car el le est t rop l imi té : pas d'int elli sense, pas de mi se
en form e de la syntaxe, etc. Ensu ite, il fau t au mi nim um windows xp pro ou win dows 2000 et bi en sur I IS vers ion 5 mi nim um . Auparavant, on pouvait cr éer son site web avec
PWS (personal web server) gr atuit emen t et sous win dows 98. D onc f inanci èremen t, c'est pas la m êm e h istoir e n on plu s. En revanche, l e concept des web ser vices semble tr ès
intér essant pou r les appli cat i on s di stri buées .

En concl usi on, à l'heu re actuel le il appar ait éviden t que .NET n'est pas adapté au devel oppem ent d'appli cat ions windows cr it iques, rapides, por tabl es entr e di ffér entes ver sions de
windows, à des di str ibut i on s grand pu bli c par in tern et sou s for me de sharewar es ou freeware, etc

Il appar ait , par con tre, etre un e évol ut i on sér ieu se du langage ASP en per mettant la program mation sou s di fférents langages de sites w eb et in tegr e l es con troles web pou r des
appli cat ions intr an et. Ou encore des appl icat ions distr ibu és v ia l es serv ices web.

C'es t donc plutôt u n produi t qui vi se plutôt les entr epri ses. L'in stallat ion du fr am ework sur tous l es postes ser ai t u n vér itable plu s dans de nom breu x cas m algr é l'im por tan te m ise à j ou r
necessai re. Si l'on devait fai re un e com par ai son avec Java, j e di rais que si Java n'avai t pas l a portabili té qu 'i l a, il ser ai t écrasé par par l e tr io Visu al Studi o.NET / .NET
Framew or k / C# m ai s comm e ce n'est pas le cas, les choses sont dif fér entes. Dans le cas ou l'on le poi d du déploiement des ou t il s n e pose pas de problèm e et que la plate
form e ci ble est wi ndows/ i nter net, .net r este l'ou t il de prem ier choix. Dans le cas contr ai re, il fau t u t ili ser Java sans discu ter .

Qu and à m oi , je respecte cette façon de voir , et j'ai choi si bor land Buil der c++ car i l di spose d'out il s rad i nex istants ai ll eur s qu e ch ez m icr osoft . En effet , BC++ Bui lder per met de
cons tru ir e u ne appl i de l a même façon qu 'avec vb.net. La bi bliothèque fou rni e avec Borl and C++Bu il der ver sion entr epri se est pl us ri che que cel le de .net. par ail leu rs, l es
appli cat ions produites avec Bor land C++Bu ilder son t r api des et portables (lin ux ,wi ndow s95,98,etc). Il est d'aill eur s fort probabl e qu e j e chan ge de pl at e for me pou r li nu x pour
des r aisons écon om iques: la depen dan ce m ic rosoft r evi ent cher e (notam ent à cause des li cences)

Mêm e si j 'ai évi té les aspects pur ement techni qu es, j 'espère avoi r apporté u n peu de l um ièr e sur .net.

A+

Why embedded Linux ?

� Proved stability, reliability
� Proved security
� Is ported on about any platform
� Exists a real-time kernel patch
� Can be tailored to match specific embedded needs

The YOPY kernel+base applications fits in 24 MB

(OS, X-Window, base applications...)

As example, the commercial PDA called Yopy,
has a total memory of 64MB. The OS, base
applications such as graphical interface,
multimedia player, web browser, e-mail client,
games, shell, ... fits only in 24 MB of RAM.

Why embedded Linux ?

� Proved stability, reliability
� Proved security
� Is ported on about any platform
� Exists a real-time kernel patch
� Can be tailored to match specific embedded needs
� Is maintained, ported by the community

Linux was created in 1991. The evolution of this
OS was so fast, due to the Internet community
support, that it supplanted Hurd (the free OS
developed by the FSF) and it evolved to the best
OS available, forcing IBM to port Linux to all its
platforms from the desktop to the mainframe.

(Some NASDAQ IBM mainframes are running
Linux)

Why embedded Linux ?

� Proved stability, reliability
� Proved security
� Is ported on about any platform
� Exists a real-time kernel patch
� Can be tailored to match specific embedded needs
� Is maintained, ported by the community
� Is free

Meaning that for companies that sells hardware
(not software), they have the total freedom to
access the embedded OS source code, to correct it,
adapt it, tune it and use it on as many systems as
they want for free, receive for free updates, bug
fixes, security fixes, ...

Why embedded Linux ?

� Proved stability, reliability
� Proved security
� Is ported on about any platform
� Exists a real-time kernel patch
� Can be tailored to match specific embedded needs
� Is maintained, ported by the community
� Is free
� Is very efficient in memory and CPU usage

Tests made by Oracle and newspapers shows that
on the same hardware, Linux is in average about
30% more efficient than Microsoft OS.

A Linux-based router running G703 2Mb/s line,
plus IEEE 802.1q vlan tagging on a fast-Ethernet
line, plus SDLS on PPPoE, plus firewalling,
routing, Network Address Translation, web proxy
service, file and graphical desktop service plus
other services (SNMP, NTP, FTP, NFS, ...) fits in
128MB of ram. No swap is required.

Why embedded Linux ?

� Proved stability, reliability
� Proved security
� Is ported on about any platform
� Exists a real-time kernel patch
� Can be tailored to match specific embedded needs
� Is maintained, ported by the community
� Is free
� Is very efficient in memory and CPU usage
� Is designed to work without graphical interface

Linux can be configured to offer all services
(including remote GUI) on system having no
graphical interface ! Embedded devices, such as
routers, MP3 players, set-top boxes, car radios...
can be fully accessed, maintained, debugged
through a simple Ethernet or serial interfaces.

Strategic considerations

� Anti-competitive proprietary OSes

Proprietary OSes can have anti-competitive
behaviors such as hiding APIs, changing
implementations from update to update to prevent
competitors software to be supported, hide some
hardware specifications to prevent competitor's
product to use it, not support some interface that
did not pay an entrance fee, integrate
undocumented services to their 'OS' to give
advantage to their own software against
concurrents.

Strategic considerations

� Anti-competitive proprietary OSes
– The Office Suite example

Microsoft finally admitted that hidden APIs were
part of Windows OS suite to give advantage to
MS-Office. Too late: there isn't a commercial
alternative to MS-Office on Windows any more.

Strategic considerations

� Anti-competitive proprietary OSes
– The Office Suite example
– The web browser example

The market of commercial web browsers is out.
Microsoft integrated this functionality in its OSes
against legal decisions (Microsoft was already
condemned before launch of Windows-95 for this).
Developing a commercial product based on
Windows means that you play a game against an
opponent that rules the game, changes the rules
during the game & does not respect them.

Strategic considerations

� Anti-competitive proprietary OSes
– The Office Suite example
– The web browser example
– The Palm example

Palm since 2000 does not support anymore
synchronization between its PDAs and laptops by
IR interfaces because Microsoft changed the way
this device was handled by Windows since
Win2000 and refuse to disclose the way to use it.

Knowing that Microsoft decided to enter the PDA
market, it's not strange to see them refusing such
an information to their main concurrent on that
market. Such a behavior has a name: it abuse of
dominant position to extend monopoly to other
markets. It is strictly i llegal but when it wil l be
ruled, Palm will be out of the market since years.
Take this as example and avoid any link with
proprietary OSes for your embedded business, if
you don't want to be out in short term.

Strategic considerations

� Anti-competitive proprietary OSes
� Anti-competitive proprietary protocols

Same applies to protocols. As soon as a proprietary
protocol is used, the dependency to the legal owner
of the protocol is total. That's why
telecommunication standards have always been
published and interoperable between various
manufacturers: GSM are using a standard to
communicate, TVs are all using same published
process to reproduce pictures, phones of any
trademark are usable on public phone network,
success of the Internet is based on published IP,
TCP, UDP, HTML standards, success of CDs is
due to the publication of the standard by its
creator.

Strategic considerations

� Anti-competitive proprietary OSes
� Anti-competitive proprietary protocols

– Media-player

Media-player is a video signal streaming format
that is NOT published, not interoperable, forces
the customer to purchase proprietary OS, forces
the service provider to purchase proprietary
streamer... It's exactly the opposite of a standard
and is dangerous because it concentrate control on
multi-media services in the hands of a single
monopolist. Could we accept a single company to
control totally the telecommunication market ?

Strategic considerations

� Anti-competitive proprietary OSes
� Anti-competitive proprietary protocols

– Media-player
– CIFS

Instead of supporting standardized file transfer
protocols such as FTP, NFS, HTTP file transfer
protocol, ... Microsoft preferred to use the CIFS
published standard. Because this allowed
interconnection between Windows-based system
with other systems running CIFS services,
Microsoft changed progressively the CIFS
implementation so that it is no more a standard.
Even the famous open-source CIFS
implementation that follows those changes is
forbidden to use by Windows licenses. Microsoft
hates interoperability, prevents it by changes in its
proprietary protocols and if it's not enough,
prohibit interoperabil ity by license terms.

Strategic considerations

� Anti-competitive proprietary OSes
� Anti-competitive proprietary protocols

– Media-player
– CIFS
– ...

Strategic considerations

� Anti-competitive proprietary OSes
� Anti-competitive proprietary protocols

=> Avoid using proprietary elements under control
of (potential, future, actual) concurrents !

Integration of proprietary elements in an embedded
system puts lethal dependency on potential or
actual concurrents. Examples are numerous: in mid
or long-terms, this will put you out of business
because of i llegal anti-competitive behaviors.
More than that, EC directive demand publication
of telecommunication standard when used on
public network and targeting public audience. Use
of proprietary protocols or systems supporting only
proprietary protocols is to be avoided by principle
and by law.

Strategic considerations

� Anti-competitive proprietary OSes
� Anti-competitive proprietary protocols

=> Avoid using proprietary elements under control
of (potential, future, actual) concurrents !

Counter examples:

Strategic considerations

� Anti-competitive proprietary OSes
� Anti-competitive proprietary protocols

=> Avoid using proprietary elements under control
of (potential, future, actual) concurrents !

Counter examples:
� Sony's success with Sony PlayStation II

Sony is not out of the game console business
because it has chosen to build it's embedded
system on non proprietary system and they
develop their game on Linux. They have the
control of their hardware and software platform.
They don't depend on concurrent's proprietary
parts.

Strategic considerations

� Anti-competitive proprietary OSes
� Anti-competitive proprietary protocols

=> Avoid using proprietary elements under control
of (potential, future, actual) concurrents !

Counter examples:
� Sony's success with Sony PlayStation II
� Ericsson & Nokia using Java technology on GSM

Ericsson and Nokia understood that the proposed
OS for GSMs by Microsoft cannot be used by
them. If they take that alternative, Microsoft will
sell all GSMs within next few years. They have no
choice but using standard systems and protocols
not under control of a proprietary software vendor:
they have chosen Java as software platform for
their next generation GSMs.

Strategic considerations

� Anti-competitive proprietary OSes
� Anti-competitive proprietary protocols

=> Avoid using proprietary elements under control
of (potential, future, actual) concurrents !

Counter examples:
� Sony's success with Sony PlayStation II
� Ericsson & Nokia using Java technology on GSM
� ...

Strategic considerations

Strategic considerations
� Stay hardware independent: use a multi-platform OS

In order to be ready for new emerging hardware
and keep the possibility to change of hardware if
useful, in order to be in good position for the
negotiation with hardware manufacturer, the
choice of an OS and software suite that is portable
must be done.

Strategic considerations
� Stay hardware independent: use a multi-platform OS
� Stay vendor independent: use multi-vendor OS

In order to be vendor-independent, choose an OS
that is sold by multiple distributors. The same
product (Linux) is proposed in more than 200
different distributions. Prices are variable:

* RedHat Linux professional is around 275 USD.
* Suse Linux professional is around 40 EUR.
* Some distributions are available gratis.

Strategic considerations
� Stay hardware independent: use a multi-platform OS
� Stay vendor independent: use multi-vendor OS
� Stay OS independent: use standard API, libs, tools, ...

It is possible with a bit of attention to develop
software that does not contain Linux-specific code.
Ex: Ansi-C, C++ with TCL/Tk graphical interface
based on GLIB, or Perl, Java, ... applications can
run on as many platforms as Linux, FreeBSD,
NetBSD, OpenBSD, Solaris, MaxOS X, Win95,
Win98, Win2000, WinNT3.51, WinNT4, WinXP,
HP-UX, IRIX, AIX, True64, Hurd, ...

This way, the project remains highly independent
of a specific OS. If some Linux-specific code is
required, locate it in a documented specific part of
the code (OS adaptation layer module) so that port
will be easier.

Strategic considerations
� Stay hardware independent: use a multi-platform OS
� Stay vendor independent: use multi-vendor OS
� Stay OS independent: use standard API, libs, tools, ...
� Keep business freedom: no export regulations in licenses

Keep your business market as open as the world is.
In some proprietary OS licenses, there are
exportation restrictions. There is no guarantee the
list of banned countries will not change, so using
those softwares in an embedded application gives
the control of a foreign country on the market you
can work on.

Some US exportation regulations also limit the
functionalities of software, even for European
Union: security is treated differently for exported
software than for local ones. Do we have to accept
that products we sell must be less secure than
concurrent ones ? Is this difference limited to
security ? Will it remain limited to security issues
?

Strategic considerations
� Stay hardware independent: use a multi-platform OS
� Stay vendor independent: use multi-vendor OS
� Stay OS independent: use standard API, libs, tools, ...
� Keep business freedom: no export regulations in licenses
� Keep your customers base secret: no mandatory OS registrations

In order to protect your business against unfair
competitors, it is important to keep secrecy about
your customers. OSes or other proprietary software
that requires on-line registration shows to
(potential) competitors the list of your embedded
application customers, gives as much information
as the proprietary OS vendor wants to know.

Strategic considerations
� Stay hardware independent: use a multi-platform OS
� Stay vendor independent: use multi-vendor OS
� Stay OS independent: use standard API, libs, tools, ...
� Keep business freedom: no export regulations in licenses
� Keep your customers base secret: no mandatory OS registrations
� Be ready for new emerging platforms

Evolution to new emerging platforms, such as
Hurd or L4 is not a problem when using standard
APIs and programming languages.

New OSes such as Hurd or L4 are using the same
standards: Posix processes and inter-process
communication mechanisms, support of the GLIB
library and Ansi-C programming language. All
other tools, such as other programming language
compilers or interpreters are then portable on those
new OSes, as well as graphical interfaces and other
applications. In other words, if you develop on
Linux, you're ready for OSes that are not yet
available.

Strategic considerations
� Stay hardware independent: use a multi-platform OS
� Stay vendor independent: use multi-vendor OS
� Stay OS independent: use standard API, libs, tools, ...
� Keep business freedom: no export regulations in licenses
� Keep your customers base secret: no mandatory OS registrations
� Be ready for new emerging platforms
� Avoid uncontrolled licenses prices caused by monopolies

By choosing proprietary tools (OS, programming
language, libraries, protocols, formats, ...) provided
by a single vendor, even if the first license price is
low, your business becomes dependent of a single
provider, meaning that the future prices for
licenses or services can raise as high as the
monopolist decides. You have no way to change of
provider (it's unique) but to port your application
to an another proprietary system, or choose an
open platform, interoperable with other systems,
keeping you in good situation for the negotiation
of software and services prices.

Linux is currently the most mature platform giving
this kind of guarantee: it's free and multi-vendor.

Strategic considerations
� Stay hardware independent: use a multi-platform OS
� Stay vendor independent: use multi-vendor OS
� Stay OS independent: use standard API, libs, tools, ...
� Keep business freedom: no export regulations in licenses
� Keep your customers base secret: no mandatory OS registrations
� Be ready for new emerging platforms
� Avoid uncontrolled licenses prices caused by monopolies
� Keep technology control: Access to all APIs, adapt the kernel...

In order to be able to develop the best embedded
applications, access to all the underlaying sources
is a must: depending on the kind of application,
slight changes to the kernel or some part of it (IP
stack, real-time scheduler, ...) will make the
difference between your product and concurrent's
ones. If the concurrent is using proprietary closed
tools, you have key advantage on it. If the
concurrent is the vendor of a closed proprietary
software suite that you have chosen, you are the
looser.

Strategic considerations
� Stay hardware independent: use a multi-platform OS
� Stay vendor independent: use multi-vendor OS
� Stay OS independent: use standard API, libs, tools, ...
� Keep business freedom: no export regulations in licenses
� Keep your customers base secret: no mandatory OS registrations
� Be ready for new emerging platforms
� Avoid uncontrolled licenses prices caused by monopolies
� Keep technology control: Access to all APIs, adapt the kernel...
� Keep up-to-date: Research, high education, new protocols...

New standards (such as Internet protocols, new
data formats, ...) are developed by consortiums or
work groups such as the IETF. To develop new
prototypes of protocols implementations, access to
the entire kernel source is required. That's why
new protocols, new data formats are developed as
example by IETF members on Solaris, BSD and
Linux. That's why Linux implemented IPv6 three
years in advance on other proprietary systems.
Linux also implements already IGMPv3, lots of
encryption mechanisms and security features
unknown to other proprietary systems. Linux is
used in universities, research centers... So it is up-
to-date, state of the art OS.

Strategic considerations
� Stay hardware independent: use a multi-platform OS
� Stay vendor independent: use multi-vendor OS
� Stay OS independent: use standard API, libs, tools, ...
� Keep business freedom: no export regulations in licenses
� Keep your customers base secret: no mandatory OS registrations
� Be ready for new emerging platforms
� Avoid uncontrolled licenses prices caused by monopolies
� Keep technology control: Access to all APIs, adapt the kernel...
� Keep up-to-date: Research, high education, new protocols...
� Avoid OS that has a foreign intelligence agency back-door in it

It is well known and has been admitted that
Windows systems contains a back-door allowing
US intelligence services to enter any computer
running this kind of software and connected to a
network. Development of embedded applications
on such a system is dangerous for strategic
reasons: let's imagine all TV sets, all phones, all
cars in Europe running this kind of software. What
about our independence, our freedom of choice,
especially if they diverge from those of US ?

More than that, those kind of OS might be in short
or mid-term forbidden by EU authorities for
obvious security reasons.

Strategic considerations
� Stay hardware independent: use a multi-platform OS
� Stay vendor independent: use multi-vendor OS
� Stay OS independent: use standard API, libs, tools, ...
� Keep business freedom: no export regulations in licenses
� Keep your customers base secret: no mandatory OS registrations
� Be ready for new emerging platforms
� Avoid uncontrolled licenses prices caused by monopolies
� Keep technology control: Access to all APIs, adapt the kernel...
� Keep up-to-date: Research, high education, new protocols...
� Avoid OS that has a foreign intelligence agency back-door in it
� Avoid OS that are forbidden by states or administrations

So when choosing proprietary OS or software tools
for an embedded application, it must be known
that some states or organizations are already
banning some systems. As example, German army
bans use of Microsoft systems in military
applications. Other countries, such as China, Peru,
UK are following the same direction.

Strategic considerations
� Stay hardware independent: use a multi-platform OS
� Stay vendor independent: use multi-vendor OS
� Stay OS independent: use standard API, libs, tools, ...
� Keep business freedom: no export regulations in licenses
� Keep your customers base secret: no mandatory OS registrations
� Be ready for new emerging platforms
� Avoid uncontrolled licenses prices caused by monopolies
� Keep technology control: Access to all APIs, adapt the kernel...
� Keep up-to-date: Research, high education, new protocols...
� Avoid OS that has a foreign intelligence agency back-door in it
� Avoid OS that are forbidden by states or administrations
� ...

Conclusion

Conclusion

� Linux gives you all strategic guarantees

Conclusion

� Linux gives you all strategic guarantees
� Linux is efficient, reliable, tailorable, portable,

up-to-date, secure, fast evolving, widely
supported, real-time ready, embeddable, low-cost,
implement standard protocols, supports portable
APIs, use few memory, does not require GUI...

Conclusion

� Linux gives you all strategic guarantees
� Linux is efficient, reliable, tailorable, portable,

up-to-date, secure, fast evolving, widely
supported, real-time ready, embeddable, low-cost,
implement standard protocols, supports portable
APIs, use few memory, does not require GUI...

Linux is the OS of choice
for embedded applications

Links relative to embedded Linux

� http://embedded.linuxjournal.com
� http://www.embedded-linux.org
� http://www.embeddedlinux.com
� http://www.embeddedsys.com
� http://www.realtimelinux.com

Links to embedded Linux products

� http://www.lineo.com
� http://www.yopy.com
� http://www.cyclades.com
� http://www.b2c2.com/products/homestreamer.html
� http://www.penguincomputing.com
� http://hippoinc.com
� http://www.ch1.com
� http://www.opentv.com

Embedded systems: strategic issues

http://BFrere.net/linuxdays2002

Questions ?

Embedded software: strategic issues

